

Low PT Analysis Update

Lina Galtieri(LBNL), Corrinne Mills (Edinburgh)

for the Lowpt/W+jets group

Outline

- New baseline for the DF channels
 Control Regions Results
- Comparing Results in different conditions
- Contribution to the H --> WW sample
- Normalized SS-CR for Low and All Pt's Control Regions plots for Low and All Pt's SS validation plots
- Low PT Signal Region plots
- Summary of observations

Analysis Conditions

- Analysis code revision 570789, Nov 15. Ntuples tag-02-25
- New baseline: see Jonathan talk at the ggF optimization meeting: Nov 8 WW CR cuts: 55 < Mfl < 110 GeV, DF I < 2.6, PTII > 15 GeV Change METRel cut to METTrackHWW-CL MT calculated with METTrackHWW-CL Njet=0 $E_{T,miss}^{Track-Cl}$ > 20. Njet=1 $E_{T,miss}^{Track-Cl}$ > 10. Max (MWT) > 50 Njet=0 $E_{T,miss}^{Track-Cl}$ > 20. Njet=1 $E_{T,miss}^{Track-Cl}$ > 10. Max (MWT) > 50
- Improved lepton selections: isolation cuts, VTLH
 W+jets V8.2 (see Keisuke's talk)
- Content

Cutflows for (2012 only) all DF channels em and me. Both 0-jet, 1jet channels} Missing latest improvements: Z tau tau CR's and WW MC changes (had problems with the latest CAF code).

Only DF analysis shown here: SF, VBF, 2011 analyses are in progress.

Normalization Factors

Control Region Strategy

WW		0 jet		1 jet			
	purity	N _{data}	NF	purity	$N_{\rm data}$	NF	
$10 < p_T^{\text{sublead}} < 15$	31%	208	0.84 ± 0.25	23%	92	1.15 ± 0.48	
$15 < p_T^{\text{sublead}} < 20$	50%	381	1.52 ± 0.14	32%	165	1.11 ± 0.27	
$p_T^{\text{sublead}} > 20$	74%	2273	1.15 ± 0.03	41%	2934	1.09 ± 0.05	

top		0 jet*		1 jet			
	purity	$N_{ m data}$	NF	purity	$N_{\rm data}$	NF	
$10 < p_T^{\text{sublead}} < 15$	88%	449	1.01 ± 0.12	84%	340	0.97 ± 0.07	
$15 < p_T^{\text{sublead}} < 20$	85%	1179	1.14 ± 0.09	90%	714	1.04 ± 0.05	
$p_T^{\text{sublead}} > 20$	95%	7789	0.97 ± 0.03	95%	5250	0.96 ± 0.02	

$Z \rightarrow \tau \tau$		0 jet		l jet			
	purity	N _{data}	NF	purity	$N_{\rm data}$	NF	
$10 < p_T^{\text{sublead}} < 15$	90%	2413	1.01 ± 0.03	86%	1256	1.01 ± 0.04	
$15 < p_T^{\text{sublead}} < 20$	89%	1457	0.97 ± 0.03	90%	1489	1.05 ± 0.03	
$p_T^{\text{sublead}} > 20$	85%	931	0.95 ± 0.05	88%	2320	1.05 ± 0.03	

- NFs consistent, but tend to be high for 15 < p_T^{sublead} < 20
- CR purity only depends strongly on p_T^{sublead} for WW
 - → Exclude 10 < p_T^{sublead} < 15 from WW CR</p>

22 Nov. 2013

c. mills (Edinburgh)

11

Background in different PT bins

0-jet Blinded SR (after $\Delta \varphi(ll) < 1.8$)

Low PT: tag-02-23 and tag-02-25 NJ=0

· Comparison, after the DF_{II} cut, of many steps in the analysis

Low PT	Njet=0								
tag-02-24	Signal	WW	nonWW	tt	Sing. Top	Z+jets	W+jets	All Bkg.	S/B
eµ .	20.5 ± 0.5	91.1 ± 2.6	61.3 ± 2.7	8.6 ± 1.0	5.2 ± 0.3	0.9 ± 0.4	64.2 ± 2.9	231.3 ± 4.8	0.089
μе	13.6 ± 0.4	64.1 ± 2.2	70.3 ± 3.1	5.1 ± 0.9	3.8 ± 0.3	0.1 ± 0.1	82.8 ± 1.1	226.2 ± 4.0	0.060
еµ + µе F(back.) (%)	34.1 ± 0.7	155.2 ± 3.4 33.8%	131.6 ± 4.1 28.6%	13.7 ± 1.3 3.0%	9.0 ± 0.4 2.0%	1.0 ± 0.4 0.2%	147.0 ± 3.2 32.0%	457.5 ± 6.3	0.075
Low PT	Njet=0	V8.1							
tag-02-25	Signal	WW	nonWW	tt	Sing Top	Z+jets	W +jets	All Bkg.	S/B
еµ	23.9 ± 0.6	103.2 ± 2.7	72.6 ± 2.8	10.8 ± 1.2	6.7 ± 0.4	2.5 ± 1.3	85.6 ± 3.3	282.5 ± 5.4	0.085
μе	15.6 ± 0.4	74.2 ± 2.3	81.6 ± 3.3	7.0 ± 1.0	4.9 ± 0.3	7.7 ± 6.4	89.6 ± 1.1	264.9 ± 7.7	0.069
eμ + μe F(back.) (%)	39.8 ± 0.7	177.4 ± 3.5 32.4%	155.2 ± 4.3 28.4%	17.8 ± 1.5 3.3%	11.6 ± 0.5 2.1%	10.2 ± 6.6 1.9%	175.1 ± 3.5 32.0%	547.4 ± 9.4	0.073
Low PT	Njet=0	V8.2							
tag-02-25	Signal	WW	nonWW	tt	Sing Top	Z+jets	W+jets	All Bkg.	S/B
eµ	23.9 ± 0.6	106.9 ± 2.8	77.0 ± 2.9	9.8 ± 1.1	6.1 ± 0.3	2.5 ± 1.3	81.6 ± 3.2	284.0 ± 5.4	0.085
μе	15.9 ± 0.4	76.8 ± 2.3	85.4 ± 3.4	6.4 ± 0.9	4.4 ± 0.3	7.7 ± 6.4	82.5 ± 1.2	263.2 ± 7.8	0.078
eμ + μe F(back.) (%)	39.8 ± 0.7	183.6 ± 3.6 33.6%	162.4 ± 4.5 29.7%	16.2 ± 1.4 3.0%	10.5 ± 0.4 1.9%	10.2 ± 6.6 1.9%	164.1 ± 3.5 30.0%	547.1 ± 9.5	0.072

W+jets FF's change

> LH added

- The FF changes reduced the μe background in W+jets, but analysis changes increased both signal and backgrounds
- The LH change reduced the overall background by ~5% but the TrackMET increased both signal and backgrounds

Low PT tag-03-23 to 02-25 Njet=1

• For Nj=1 after the $\Delta\Phi_{||}$ cut, we see a different pattern

Low PT	Njet=1	34								
tag-02-24	Signal	WW	nonWW	tī	Sing Top	Z+jets	W+jets	All Bkg.	S/B	
eµ	8.5 ± 0.3	28.1 ± 1.4	11.0 ± 1.2	21.1 ± 1.6	6.9 ± 0.5	13.6 ± 1.3	31.7 ± 2.0	112.3 ± 3.4	0.075	
με	5.2 ± 0.2	17.3 ± 1.1	13.3 ± 1.4	13.6 ± 1.3	4.7 ± 0.4	6.9 ± 0.9	20.5 ± 0.8	76.2 ± 2.5	0.068	\M/+ia+a
$e\mu + \mu e$	13.6 ± 0.4	45.3 ± 1.7	24.3 ± 1.8	34.6 ± 2.1	11.6 ± 0.6	20.5 ± 1.5	52.2 ± 2.2	188.5 ± 4.3	0.072	W+jets
F(back.)(%)		24.0%	12.9%	18.4%	6.2%	10.9%	27.7%			FF's
Low PT	Njet=1	V8.1					, and the second) 1 3
tag-02-25	Signal	WW	nonWW	tt	Sing Top	Z+jets	W+jets	All Bkg.	S/B	changed
ен	10.3 ± 0.4	31.6 ± 1.4	12.3 ± 1.1	25.6 ± 1.8	8.8 ± 0.5	7.3 ± 1.2	37.0 ± 2.1	122.6 ± 3.6	0.084	criarigea
με	6.6 ± 0.3	20.3 ± 1.1	14.9 ± 1.4	17.1 ± 1.5	6.6 ± 0.5	3.6 ± 0.8	24.7 ± 0.9	87.2 ± 2.7	0.076	,
$e\mu + \mu e$	16.9 ± 0.5	51.8 ± 1.8	27.2 ± 1.8	42.7 ± 2.4	15.4 ± 0.7	11.0 ± 1.4	61.7 ± 2.3	209.7 ± 4.5	0.080	
F(back.)(%)		24.7%	12.9%	20.3%	7.4%	5.2%	29.4%			
Low PT	Njet=1	V8.2								; LH
tag-02-25	Signal	WW	nonWW	tt	Sing Top	Z+jets	W+jets	All Bkg.	S/B	added
еµ	10.3 ± 0.4	33.1 ± 1.5	16.2 ± 1.5	23.8 ± 1.7	8.2 ± 0.5	7.6 ± 1.2	32.4 ± 1.2	121.4 ± 3.6	0.085	added
μе	6.6 ± 0.3	21.3 ± 1.2	19.7 ± 1.8	15.9 ± 1.4	6.1 ± 1.4	3.8 ± 0.8	22.5 ± 0.9	89.2 ± 2.9	0.074	
eμ + μe F(back.)(%)	16.9 ± 0.5	54.4 ± 1.9 25.8%	35.9 ± 2.3 17.0%	39.7 ± 2.2 18.8%	14.4 ± 0.7 6.8%	11.4 ± 1.5 5.3%	54.9 ± 2.3 26.1%	210.6 ± 2.3	0.080	

- FF's change reduced the W+jets somewhat, but also here other changes increased both signal and background
- The TrackMET change improved the signal as well as the S/B
- The LH affected the WW background.

Low PT Statistics

Sample Njets=0,1	Signal		Background		S/B	
	еμ	μе	еμ	μе	еμ	μе
All PT bins	158.8	89.4	1701	1510	0.093	0.059
Low PT	34.2	22.6	405	352	0.084	0.064
Low PT fraction	21.5%	25.3%	23.8%	23.3%		

- Low PT contributes 21.5% of the events and 23.8% of the background in the $e\mu$ channel
- It contributes 25.3% of the events and 23.3% of the background in the μe channel
- 5/B are comparable to the All Pt bins samples
- · Only the stat analysis can tell us what the real contribution is

Comments on cutflows and plots

- Recent efforts have improved the low PT sample.
 - For Njet=1 we have: background is down by 6.6%.
- Signal is up by 22%. S/B is increased by 14%
- Most important issue is related to the systematic uncertainties that will enter in the final fit. The W+jets background is about 30% of the total, but it has the largest systematics. Work on this is still going on.
- Will show a few plots here.
 A more complete set will be posted on share point
- · Look at SSCR plots first, CR next, SR at the end

Normalized SS-CR, All PT : $\Delta \varphi(\ell \ell)$, MW_T

em: still a bit underestimated

μe: clear improvement is seen

Normalized SS-CR, All PT: M_{ll} , M_T

- All PT, Normalized SS-CR Njet=0: M_{ll} (top), M_T (bottom)
- From left: $e\mu$, μe , $e\mu + \mu e$

Dec 3, HSG3 Meeting

Lina Galtieri

Status of the Low PT Analysis

(6/23)

Normalized SS-CR, All PT: M_{ll} , M_T , Njet=1

- All PT, Normalized SS-CR Njet=1: M_{ll} (top), M_T (bottom)
- From left: $e\mu$, μe , $e\mu + \mu e$

Dec 3, HSG3 Meeting

Lina Galtieri

Status of the Low PT Analysis -1

(8/23)

Normalized SS-CR, Low PT: M_{ll} , M_T , Njet=1

- Low PT, Normalized SS-CR Njet=1: M_{ll} (top), M_T (bottom)
- From left: $e\mu$, μe , $e\mu + \mu e$

Dec 3, HSG3 Meeting

Lina Galtieri

Status of the Low PT Analysis -1

(9/23)

All PT, WW 1-jet CR: $\Delta \varphi(\ell \ell)$ and M_T

- ALL PT, Njets = 1, WW CR: $\Delta \varphi(\ell \ell)$ (top), M_T (bottom).
- From left: $e\mu$, μe , $e\mu + \mu e$

Dec 3, HSG3 Meeting

Lina Galtieri

Status of the Low PT Analysis -1

(12/23)

$\Delta\varphi(\ell\ell)$ and M_T in WW 0 jets CR. ALL PT

- Low PT, Njet=0, WW CR: $\Delta \varphi(\ell \ell)$ (top), M_T (bottom).
- From left: $e\mu$, μe , $e\mu + \mu e$

Dec 3, HSG3 Meeting

Lina Galtieri

Status of the Low PT Analysis -1

(13/23)

SS after $\Delta \varphi(\ell \ell)$ cut: SubLeading Lepton P_T

- SS after $\Delta \varphi(\ell \ell)$ cut: SubLeading Lepton P_T , Njet=0 (top), Njet=1 (bottom)
- From left for: $e\mu$, μe , $e\mu + \mu e$.

Dec 3, HSG3 Meeting

Lina Galtieri

Status of the Low PT Analysis

(18/23)

SS after $\Delta \varphi(\ell \ell)$ cut: $M_{\ell \ell}$

- SS $M_{\ell\ell}$ after $\Delta\varphi(\ell\ell)$ cut: Njet=0 (top), Njet=1 (bottom)
- From left for: $e\mu$, μe , $e\mu + \mu e$

good Data/MC agreemen

SS Plots after $\Delta \varphi(\ell \ell)$ cut: M_T

- Top: SS M_T after $\Delta \varphi(\ell \ell)$ cut, Njet=0 for $e\mu$, μe , $e\mu + \mu e$
- Bottom: SS M_T after Δφ(ℓℓ) cut, Njet=1 for eµ, µe, eµ + µe

Blinded SR, $\Delta \varphi(\ell\ell) < 1.8$: $\Delta \varphi(\ell\ell), M_T, M_{ll}$, Njet=0

- Blinded SR, Njet=0, $\Delta \varphi(\ell \ell) < 1.8$: $\Delta \varphi(\ell \ell)$, M_T , M_{ll}
- Top: eμ. Bottom: μe

Dec 3, HSG3 Meeting

Lina Galtieri

Status of the Low PT Analysis

(21/23)

Blinded SR, $\Delta \varphi(\ell\ell) < 1.8$: $\Delta \varphi(\ell\ell), M_T, M_{ll}$, Njet=1

- Njet=1 Blinded SR after Δφ(ℓℓ) < 1.8 cut: Δφ(ℓℓ), M_T, M_{ll},
- Top: eμ. Bottom: μe

Dec 3, HSG3 Meeting

Lina Galtieri

Status of the Low PT Analysis -1

(22/23)

Summary of Observations

- Cutflows: low pT contribution is 22-25% of the signal, and 23% contribution to the background
- The new lepton selection has decreased the em W+jets background by over 20%. However, with the new TrackMet baseline, we increase a bit this background.
- SSCR plots of low pT events look good
- Opposite sign CR's: data/MC for e μ and μ e channel look good
- The eµ channel background has improved, but still is somewhat underestimated. For the µe channel Data/MC agreement has improved, but it is not perfect.

What remains to be done

- Finalize W+jet background:
 Fake factors, systematics etc
 (see Keysuke's talk)
- Add Same Flavor Analysis
- Add 2011 Data
- Include low Pt in the VBF Analysis

Backup

Normalization Factors

Normalization Factors obtained with the new baseline except Recent changes to Z-> tt CR's and new WW MC

HWWAnalysisCode 2012: Normalization factors:

HWWAnalysisCode 2012: SSCR(em,me) 0 jet = 1.043 +/- 0.073

HWWAnalysisCode 2012: SSCR(em,me) 1jet = 1.061 +/- 0.132

HWWAnalysisCode 2012: Ztautau(em, me) 1 jet = 1.055 +/- 0.019

HWWAnalysisCode 2012: Ztautau(em, me) 0jet = 0.996 +/- 0.020

HWWAnalysisCode 2012: Top(em,me) 0jet = 0.993 +/- 0.000

HWWAnalysisCode 2012: Top(em,me) 1jet = 0.968 +/- 0.014

HWWAnalysisCode 2012: Top(em,me) incl = 1.001 +/- 0.005

HWWAnalysisCode 2012: WW(em,me) 0jet = 1.198 +/- 0.034

HWWAnalysisCode 2012: WW(em,me) 1jet = 1.081 +/- 0.049